AVERAGING OF THE SYSTEM OF EQUATIONS OF MOTION OF A VISCOUS FLUID IN A POROUS MEDIUM \dagger

G. P. PANASENKO
Moscow

(Received 26 May 1993)
A system of equations of motion of a viscous fluid (with a small coefficient of viscosity) in a periodic porous medium is considered. The ratio of the period of the structure of the medium to the characteristic dimension of the problem is a small parameter. The pore size and period of the structure are of the same order of magnitude. A formal asymptotic solution is constructed and an averaged equation, which is an analogue of the Boussinesq equation, is derived.

We will adopt as a model of a porous system a continuous medium with periodically arranged cavities (see [1], for example). Let K be the cube $\left\{\xi \in \mathbb{R}^{3} \mid 0<\xi_{j}<1, j=1,2,3\right\}$ and let us place a certain set, consisting of a finite number of domains, in K and continue it periodically (with a period of unity) in the whole of the space R^{3}. Let A be the union of all the resulting sets. We assume that the boundary ∂A is a smooth manifold and the domain $\Omega=R^{3} \mathcal{A}$ is connected, and that A_{ε} is the set obtained from A by a homothetic contraction ε^{-1} times (ε is a small parameter), that is, $A_{\varepsilon}=\left\{x \in R^{3} \mid x / \varepsilon \in A\right\}$.

We will adopt as the geometric model of the pore system the domain $\Omega_{\varepsilon}=R^{3} A_{\varepsilon}$ and consider the system of equations of motion of a viscous fluid with a small coefficient of viscosity μ_{ε} in this set

$$
\begin{align*}
& \rho(\partial v / \partial t+(v, \nabla) v)=-\nabla p+\mu_{\varepsilon} \Delta v+f_{\varepsilon}(x / \varepsilon, x, t, v) \\
& \partial \rho / \partial t+\operatorname{div}(\rho v)=0, \quad \rho=Q(p), \quad \rho, v \in R^{3} \tag{1}\\
& \mu_{\varepsilon}=\varepsilon^{\gamma} \mu, \quad \gamma<2, \quad \mu=\text { const, } \quad f_{\varepsilon}(\xi, x, t, v)=f\left(\xi, x, t \varepsilon^{2-\gamma}, v\right)
\end{align*}
$$

$x \in \Omega_{\varepsilon}$ and $t>0$ (ρ is the density, v is the velocity vector and p is the pressure), $f(\xi, x, \tau, v$) and μ are independent of ε, the function f is 1-periodic with respect to $\xi \in \Omega$, and Q is a specified smooth function.

The no-slip condition

$$
\begin{equation*}
\left.v\right|_{\partial \Omega_{\varepsilon}}=0 \tag{2}
\end{equation*}
$$

is imposed at the boundary of the domain Ω_{ε} and the initial values of the unknown functions

$$
\begin{equation*}
t=0: \quad v=0, \quad p=0 \tag{3}
\end{equation*}
$$

are specified.
The limiting behaviour of the solution of problem (1)-(3) as $\varepsilon \rightarrow 0$ is studied (a formal asymptotic solution is constructed).

There is an extensive literature ([2-8], for example) on the investigation of various equations defined in domains of this type. In particular, systems of Stokes and Navier-Stokes equations in porous media have been considered in [5-8] and averaged models of the Darcy law type [5-8], of the non-linear Darcy law type [8] and also the Brinkman law type [9] have been obtained. An averaged model of the Boussinesq equation type [10] will be obtained below for problem (1)-(3).

A formal asymptotic solution is sought in the form of functions of fast and slow variables

$$
\begin{align*}
& v=\varepsilon^{2-\gamma}(\widetilde{v}(x, \tau)+V(x / \varepsilon, x, \tau)) \\
& \rho=\bar{p}(x, \tau)+\varepsilon P(x / \varepsilon, x, \tau), \quad \rho=\bar{\rho}(x, \tau)+\varepsilon R(x / \varepsilon, x, \tau) \tag{4}\\
& \tau=t \varepsilon^{2-\gamma}, \quad(V\rangle=\int_{x} V(\xi, x, \tau) d \xi=0
\end{align*}
$$

where $P(\xi, x, \tau), V(\xi, x, \tau), R(\xi, x, \tau)$ are 1-periodic functions of ξ.
Substituting (4) into (1) and using the formula for the differentiation of a complex function, we obtain

$$
\begin{gather*}
-\mu \Delta_{\xi} V+\nabla_{x} \bar{p}+\nabla_{\xi} P-f\left(\xi, x, \tau, \varepsilon^{2-\gamma}(\bar{v}+V)\right)+\varepsilon^{3-2 \gamma} \bar{\rho}(\bar{v}+V) \nabla_{\xi} V+ \\
+\varepsilon^{2(2-\gamma)}\left(\bar{\rho} \partial(\bar{v}+V) / \partial \tau+R(\bar{v}+V) \nabla_{\xi} V+(\bar{\rho}+\varepsilon R)(\bar{v}+V) \nabla_{x}(\bar{v}+V)\right)+ \tag{5}\\
+\varepsilon^{5-2 \gamma} R \partial(\bar{v}+V) / \partial \tau+\varepsilon\left(\nabla_{x} P-2 \mu \Delta_{x \xi} V\right)-\varepsilon^{2} \mu \Delta_{x}(\bar{v}+V)-h \bar{v}-\bar{h}(x, \tau)=0 \\
\varepsilon^{-1} \operatorname{div}_{\xi}(\bar{\rho} V)+\partial \bar{\rho} / \partial \tau+\operatorname{div}_{x}(\bar{\rho}(\bar{v}+V))+\operatorname{div}_{\xi}(R(\bar{v}+V))+\varepsilon\left(\partial R / \partial \tau+\operatorname{div}_{x}(R(\bar{v}+V))\right) \tag{6}\\
\bar{\rho}-Q(\bar{p})+\varepsilon R-(Q(\bar{p}+\varepsilon P)-Q(\bar{p}))=0 \tag{7}\\
\Delta_{x \xi}=\sum_{i=1}^{3} \frac{\partial^{2}}{\partial x_{i} \partial \xi_{\xi}}
\end{gather*}
$$

h is a constant 3×3 matrix, and $\tilde{h}(x, \tau)$ is a vector function, chosen from the condition $\langle V\rangle=0$.
On the boundary $\partial \Omega_{e}$

$$
\begin{equation*}
\bar{u}+V=0 \tag{8}
\end{equation*}
$$

The functions $\bar{p}, \bar{v}, \bar{\rho}, \tilde{h}, P, V, R$ are sought in the form of regular series in the parameters $\varepsilon_{1}=\varepsilon, \varepsilon_{2}=$ $\varepsilon^{3-27}, \varepsilon_{3}=\varepsilon^{2-\gamma}$.

Substituting these series into Eqs (5)-(8), we obtain

$$
\begin{align*}
& \sum_{k, l, m=0}^{\infty} \varepsilon_{1}^{k} \varepsilon_{2}^{l} \varepsilon_{3}^{m}\left(\nabla_{x} \bar{p}_{k l m}+h \bar{v}_{k l m}+\tilde{h}_{k l m}\right)+\sum_{k, l, m=0}^{\infty} \varepsilon_{1}^{k} \varepsilon_{2}^{l} \varepsilon_{3}^{m}\left(-\mu \Delta_{\xi} V_{k l m}+\nabla_{\xi} P_{k l m}\right)=0 \\
& \varepsilon^{-1} \sum_{k, l, m=0}^{\infty} \varepsilon_{1}^{k} \varepsilon_{2}^{l} \varepsilon_{3}^{m}\left(\operatorname{div}_{\xi}\left(\bar{p}_{000} v_{k l m}\right)-\varphi_{k l m}^{l}\right)=0 \\
& \bar{p}_{000}-Q\left(\bar{p}_{000}\right)+\sum_{\substack{k, l, m=0 \\
(k, l, m) \neq(0,0,0)}}^{\infty} \varepsilon_{1}^{k} \varepsilon_{2}^{l} \varepsilon_{3}^{m}\left(\left(R_{k l m}-\left.\frac{\partial Q}{\partial p}\right|_{p=\bar{p} 000} P_{k l m}-\varphi_{k l m}^{3}\right)+\right. \\
& +\left(\bar{P}_{k+1, l, m}-\left.\frac{\partial Q}{\partial p}\right|_{p=\bar{p}_{000}} P_{k+1, l, m}\right)=0 \tag{9}\\
& V_{k l m}=-v_{k l m}, \quad \xi \in \partial \Omega
\end{align*}
$$

The three subscripts correspond to the number of the coefficient in the regular expansion in powers of $\varepsilon_{1}, \varepsilon_{2}$,
 just one of these inequalities is strict and $\varphi_{k l m}^{3}$ also depend on $\bar{p}_{k l m}$.

Note that

$$
\begin{align*}
& \left\langle\varphi_{0 l m}^{\prime}\right\rangle=0,\left\langle\varphi_{k+1, l, m}^{\prime}\right\rangle=\partial \bar{\rho}_{k l m} / \partial \tau+\operatorname{div}_{x}\left(\bar{\rho}_{k l m} \bar{v}_{000}+\bar{\rho}_{000} \bar{v}_{k l m}\right)+ \\
& +\left\langle\operatorname{div}_{x}\left(\bar{\rho}_{k l m} V_{000}\right)+\operatorname{div}_{x}\left(\bar{\rho}_{000} V_{k l m}\right)\right\rangle+\bar{\Psi}_{k l m}(x, \tau) \tag{10}
\end{align*}
$$

where $\bar{\Psi}_{k \text { cm }}(x, \tau)$ also depend on $\bar{\rho}_{q u m} \bar{v}_{q r r}$ with the subscripts q, s, and r which satisfy the same inequalities as above, $(k, l, m) \neq(0,0,0)$.
The matrix h and the vector $\tilde{h}_{k l m}$ are chosen from the condition

$$
\begin{equation*}
\left\langle V_{k l m}\right\rangle=0 \tag{11}
\end{equation*}
$$

The coefficients $\bar{p}_{k l m}, \bar{v}_{k l m}, \overline{\mathrm{p}}_{k l m}, \bar{h}_{k l m} V_{k l m}, R_{k l m}$ are constructed according to the following algorithm. Let $W(\xi)$ be a 3×3 matrix function and let $F(\xi)$ be a three-element row matrix, 1-periodic with respect to ξ, and a solution of the problem

$$
\begin{align*}
& -\mu \Delta_{\xi} W+\nabla_{\xi} F=E . \quad \operatorname{div}_{\xi} W=0, \quad \xi \in \Omega \tag{12}\\
& W=0 ; \xi \in \partial \Omega
\end{align*}
$$

E is the unit 3×3 matrix. Let us put

$$
\begin{equation*}
v_{k l m}=W\left(h \bar{v}_{k l m}+\check{h}_{k l m}\right)+\tilde{V}_{k l m}-\bar{v}_{k l m} \tag{13}
\end{equation*}
$$

where h and $\widetilde{h}_{k l m}$ are chosen from the condition that $\left\langle V_{k l m}\right\rangle=0$, that is, $\left(V_{k l m}, P_{k l m}, R_{k l m}\right)$ is a solution of the problem

$$
\begin{gather*}
-\mu \Delta_{\xi} V_{k l m}+\nabla_{\xi} P_{k l m}=\varphi_{k l m}^{2}, \quad \xi \in \Omega \tag{14}\\
\operatorname{div}_{\xi}\left(\rho_{000} V_{k l m}\right)=\varphi_{k l m}^{1}, \quad \xi \in \Omega \tag{15}\\
R_{k l m}=\left.\frac{\partial Q}{\partial p}\right|_{p=\bar{p}_{000}} P_{k l m}+\varphi_{k l m}^{3}, \quad \xi \in \Omega \tag{16}\\
\tilde{V}_{k l m}=0, \quad \xi \in \partial \Omega \tag{17}\\
h=\langle W\rangle^{-1}, \quad \tilde{h}_{k l m}=-\langle W\rangle^{-1}\left\langle\tilde{V}_{k l m}\right\rangle \tag{18}
\end{gather*}
$$

Actually, it follows from (13) and (18) that

$$
\left\langle W\left(h \bar{v}_{k l m}+\tilde{h}_{k l m}\right)+\tilde{v}_{k l m}-\bar{v}_{k l m}\right\rangle=0
$$

The condition for problem (14), (15), (17) to be solvable [2, p. 167] is

$$
\left\langle\varphi_{k+1 l m}^{\prime}\right\rangle=0
$$

and relations (9)-(11) yield the equations for $\bar{\rho}_{k m m}, \bar{p}_{k l m}, \bar{v}_{k l m}$

$$
\begin{align*}
& h \bar{v}_{k l m}+\tilde{h}_{k l m}+\nabla_{x} \bar{p}_{k l m}=0 \tag{19}\\
& \partial \bar{\rho}_{k l m} / \partial \tau+\operatorname{div}_{x}\left(\bar{\rho}_{k l m} \bar{v}_{000}+\bar{\rho}_{000} \bar{v}_{k l m}\right)+\bar{\psi}_{k l m}(x, \tau)=0 \\
& \quad \bar{\rho}_{k l m}=\left.\frac{\partial Q}{\partial p}\right|_{p=p_{000}} \bar{p}_{k l m},(k, l, m) \neq(0,0,0) \\
& \quad\langle\dot{W})^{-1} \bar{v}_{000}+\nabla_{\bar{p}_{000}}-\langle W\rangle^{-1}\left\langle V_{000}\right\rangle=0 \tag{20}\\
& \quad \partial \bar{\rho}_{000} / \partial \tau+\operatorname{div}_{x}\left(\bar{\rho}_{000} \bar{v}_{000}\right)=0, \quad \bar{\rho}_{000}=Q\left(\bar{p}_{000}\right)
\end{align*}
$$

with the homogeneous initial conditions $t=0: \bar{p}_{k l m}=0, \bar{v}_{k l m}=0$.
System (20) is an averaged system of zeroth-order equations. Substituting v_{000} from the first equation and ρ_{000} from the third equation into the second equation, we obtain

$$
\begin{equation*}
\partial Q\left(\bar{p}_{000}\right) / \partial \tau-\operatorname{div}_{x}\left(Q\left(\bar{p}_{000}\right)\langle W\rangle\left(\nabla_{p_{000}}-\langle W\rangle^{-1}\left(\tilde{V}_{000}\right)\right)\right)=0 \tag{21}
\end{equation*}
$$

where \tilde{V}_{000} is the solution of the problem

$$
\begin{align*}
& -\mu \Delta_{\xi} V_{000}+\nabla_{\xi} P_{000}=f(\xi, x, \tau, 0), \quad \xi \in \Omega \\
& \operatorname{div}_{\xi} V_{000}=0, \quad \xi \in \Omega ;\left.\quad V_{000}\right|_{\partial \Omega}=0 \tag{22}
\end{align*}
$$

Equations (14)-(20) have to be solved in the following order: problem (14), (15), (17) is first solved for the pair $\tilde{V}_{k m}, P_{k l m}$ for each fixed set of k, l, m (when $(k, l, m)=(0,0,0)$, it is problem (22)). We next determine $\tilde{h}_{k j m}$ from (18) and then solve problems (19), (20) and, finally, $R_{k l m}$ is determined from (16).

We note that the averaged model (21), (22) is an analogue of the Boussinesq model: it becomes the Boussinesq model [10] in the case of a linear dependence of $Q(p)$. If $f(\xi, x, \tau, v)=0$ when $\tau \in\left[0, \tau_{0}\right], \tau_{0}>0$, it can be shown by induction that $\tilde{V}_{k l m}=0$ when $\tau \in\left(0, \tau_{0}\right)$ so that $\bar{v}+V$ are asymptotically equal to zero when $t=0$. Conditions (1)-(3) are exactly satisfied asymptotically.

By analogy with problem (1) in the domain Ω_{ε}, problem (1)-(3) may be treated in the domain $G_{\varepsilon} \times R$, where $G_{\varepsilon}=\left\{x^{\prime} \in R^{2}, x^{\prime} \varepsilon \in G_{1}\right\}$, the domain G_{1} is bounded in R^{2} with a piecewise-smooth boundary, $x^{\prime}=\left(x_{1}, x_{2}\right)$, the function f_{ε} is solely dependent on $x^{\prime} / \epsilon, x_{3}, t, v$ and its first two components $f_{\varepsilon 1}, f_{\mathrm{E} 2}$ are zero.

This model simulates the motion of a viscous fluid in a channel of complex form. In constructing the asymptotic form we use (4) with x / ε replaced by $x^{\prime} / \varepsilon, x$ replaced by x_{3} and $\bar{v}=\left(0,0, \bar{v}_{3}\right)^{*}$. The analogue of the operator for the mean $\langle\cdot\rangle$ is the integral $\int_{G_{1}} \cdot \delta \xi^{\prime}, \xi^{\prime}=\left(\xi_{1}, \xi_{2}\right)$ (the third component of the vectors $\left(V_{k l m}\right)$ is equal to zero).

The procedure which has been described above as applied to problem (1)-(3), in the first approximation yields

$$
\frac{\partial Q\left(\bar{p}_{000}\right)}{\partial \tau}-\frac{\partial}{\partial x_{3}}\left(Q\left(\bar{p}_{000}\right)\langle\hat{W}\rangle\left(\frac{\partial \bar{p}_{000}}{\partial x_{3}}-\langle\hat{W}\rangle^{-1}\left\langle\hat{V}_{000}\right\rangle\right)=0,\left.\quad \bar{p}_{000}\right|_{t=0}=0\right.
$$

in the domain $G_{\mathrm{e}} \times R$, where $\hat{W}\left(\xi^{\prime}\right)$ is the solution of Poisson's equation

$$
-\mu \Delta_{\xi}, \hat{W}=1, \quad \xi^{\prime} \in G_{1} ;\left.\quad \hat{W}\right|_{\partial G_{1}}=0
$$

and $\hat{V}_{000}\left(\xi^{\prime}\right)$ is the solution of Poisson's equation

$$
-\mu \Delta_{\xi}, \hat{V}_{000}=f^{3}\left(\xi^{\prime}, x_{3}, \tau, 0\right), \quad \xi^{\prime} \in G_{1},\left.\quad \hat{V}_{000}\right|_{\partial G_{1}}=0
$$

Hence the homogenization procedure in the zeroth approximation yields an analogue of the Boussinesq equation in the case of an unsteady-state system of equations of motion for a viscous fluid with a small coefficient of viscosity.

This research was carried out with the financial support of the Russian Foundation for Basic Research (93-911-1729).

REFERENCES

1. BAKHVALOV N. S. and PANASENKO G. P., The Averaging of Processes in Periodic Media. Nauka, Moscow, 1984.
2. KHRUSLOV E. Ya., The Dirichlet problem in domains with a random boundary. Vestnik Khar'kov. Univ, Ser. Mekh.-Matem. 34, 14-37,1970.
3. CIORANESCU D. and PAULIN S. J., Homogenization in open sets with holes. J. Math. Anal. Appl. 71, 2, 590-607, 1979.
4. OLEINIK O. A., IOSIF'YAN G. A. and PANASENKO G. P., Asymptotic expansions of the solutions of a system of the theory of elasticity in perforated domains. Mat. Sbornik 120, 1, 22-41, 1983.
5. BERDICHEVSKII V. L., Spatial averaging of periodic structures. Dokl. Akad. Nauk SSSR 222, 3, 565-567, 1975.
6. VOLKOV D. B., Asymptotic expansion for the solutions of systems of Stokes equations and theories of elasticity in domains of special form. Zh. Vychisl. Mat. Mat. Fiz. 23, 6, 1464-1476, 1983.
7. SANCHEZ-PALENCIA E., Inhomogeneous Media and their Oscillations. Mir, Moscow, 1984.
8. ALLAIRE G., Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes. Arch. Rat. Mech. Anal. I. 113, 3, 209-259, 1991; II. 113, 3, 261-298, 1991.
9. BRINKMAN H. C., A calculation of viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Scient. Res. Ser. A. 1, 1, 27-34, 1947.
10. BOUSSINESQ J., Recherches théoretiques sur l'ecoulement des nappes d'eau infiltrées dans le sol et sur le debit des sources. J. Math. Pures et Appl. 10, 1, 5-78, 1904.
